Linear Algebra II

05/03/2018, Monday, 14:00-16:00
$1 \quad(5+5+5+5=20 \mathrm{pts})$
Inner product spaces

Let V be a real vector space.
(a) Write down the definition of inner product on V.
(b) Given an inner product on V, write down what the Cauchy-Schwarz inequality says about the inner product of two given vectors in V.
(c) Write down the definition of norm on V.
(d) Assume that $\langle u, v\rangle$ is an inner product on V. Prove that $\|u\|:=\sqrt{\langle u, u\rangle}$ is a norm on V.
$2(10+10=20 \mathrm{pts}) \quad$ Gram-Schmidt orthogonalization
Consider the inner product space $C[0,1]$ with inner product

$$
(f, g):=\int_{0}^{1} f(x) g(x) d x
$$

Let \mathcal{S} be the subspace of all functions of the form $g(x)=a+b \sqrt{x}$ with $a, b \in \mathbb{R}$.
(a) Determine an orthonormal basis of \mathcal{S}.
(b) Compute the best least squares approximation of the function $f(x)=x$ by a function from the subspace \mathcal{S}.

Let A be a real $n \times n$ matrix, let $v_{1}, v_{2}, \ldots, v_{k}$ be linearly independent vectors in \mathbb{R}^{n} and define an $n \times k$ matrix V by $V:=\left(v_{1} v_{2} \ldots v_{k}\right)$ and a subspace \mathcal{V} by $\mathcal{V}:=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. Let B be a real $k \times k$ matrix such that $A V=V B$.
(a) Prove that \mathcal{V} is A-invariant, i.e. $A v \in \mathcal{V}$ for all $v \in \mathcal{V}$.
(b) Prove that every eigenvalue of B is an eigenvalue of A.
(c) Prove that if A is nonsingular then also B is nonsingular.
(d) Assume $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of A. What does this say about B ?
(e) Assume that $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal set. Prove that if A is symmetric then B is symmetric.
$4(5+5+5+5+5=25 \mathrm{pts})$
Hermitian matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is called a skew-Hermitian matrix if $A^{H}=-A$.
(a) Show that if A is skew-Hermitian then $\operatorname{Re}\left(x^{H} A x\right)=0$ for all $x \in \mathbb{C}^{n}$.
(b) Show that if A is skew-Hermitian then for every eigenvalue λ of A we have $\operatorname{Re}(\lambda)=0$.
(c) Show that if A is skew-Hermitian then A is unitarily diagonalizable, that is, there exists a unitary matrix U such that $U^{H} A U$ is a diagonal matrix
(d) Show that if $U \in \mathbb{C}^{n \times n}$ is unitary, then for every eigenvalue λ of U we have $|\lambda|=1$.
(e) Assume now that U is unitary and skew-Hermitian. What does this say about the eigenvalues of U ?

10 pts free

