Linear Algebra II 05/03/2018, Monday, 14:00 – 16:00

1 (5+5+5+5=20 pts)

Inner product spaces

Let V be a real vector space.

- (a) Write down the definition of inner product on V.
- (b) Given an inner product on V, write down what the Cauchy-Schwarz inequality says about the inner product of two given vectors in V.
- (c) Write down the definition of norm on V.
- (d) Assume that $\langle u, v \rangle$ is an inner product on V. Prove that $||u|| := \sqrt{\langle u, u \rangle}$ is a norm on V.

2 (10 + 10 = 20 pts)

Gram-Schmidt orthogonalization

Consider the inner product space C[0, 1] with inner product

$$(f,g) := \int_0^1 f(x)g(x)dx.$$

Let S be the subspace of all functions of the form $g(x) = a + b\sqrt{x}$ with $a, b \in \mathbb{R}$.

- (a) Determine an orthonormal basis of \mathcal{S} .
- (b) Compute the best least squares approximation of the function f(x) = x by a function from the subspace S.

Let A be a real $n \times n$ matrix, let v_1, v_2, \ldots, v_k be linearly independent vectors in \mathbb{R}^n and define an $n \times k$ matrix V by $V := (v_1 v_2 \ldots v_k)$ and a subspace \mathcal{V} by $\mathcal{V} := \operatorname{span}(v_1, v_2, \ldots, v_k)$. Let B be a real $k \times k$ matrix such that AV = VB.

- (a) Prove that \mathcal{V} is A-invariant, i.e. $Av \in \mathcal{V}$ for all $v \in \mathcal{V}$.
- (b) Prove that every eigenvalue of B is an eigenvalue of A.
- (c) Prove that if A is nonsingular then also B is nonsingular.
- (d) Assume v_1, v_2, \ldots, v_k are eigenvectors of A. What does this say about B?
- (e) Assume that $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal set. Prove that if A is symmetric then B is symmetric.

4 (5+5+5+5+5=25 pts)

Hermitian matrices

A matrix $A \in \mathbb{C}^{n \times n}$ is called a skew-Hermitian matrix if $A^H = -A$.

- (a) Show that if A is skew-Hermitian then $\operatorname{Re}(x^H A x) = 0$ for all $x \in \mathbb{C}^n$.
- (b) Show that if A is skew-Hermitian then for every eigenvalue λ of A we have $\operatorname{Re}(\lambda) = 0$.
- (c) Show that if A is skew-Hermitian then A is unitarily diagonalizable, that is, there exists a unitary matrix U such that $U^H A U$ is a diagonal matrix
- (d) Show that if $U \in \mathbb{C}^{n \times n}$ is unitary, then for every eigenvalue λ of U we have $|\lambda| = 1$.
- (e) Assume now that U is unitary and skew-Hermitian. What does this say about the eigenvalues of U?